(Short) SC.1 @·AIRCRAFTUBE

  • Short SC.1
Short SC.1
    Short SC.1
  • The first Short SC.1 at the 1958 SBAC show at Farnborough
The first Short SC.1 at the 1958 SBAC show at Farnborough
    The first Short SC.1 at the 1958 SBAC show at Farnborough
  • Short SC.1
Short SC.1
    Short SC.1
  • XG900 at the South Kensington Science Museum (London)
XG900 at the South Kensington Science Museum (London)
    XG900 at the South Kensington Science Museum (London)
  • Farnborough 1958
Farnborough 1958
    Farnborough 1958
  • 1961 SBAC air show
1961 SBAC air show
    1961 SBAC air show
  • XG900 XG900
    XG900

Short SC.1

The Short SC.1 was the first British fixed-wing vertical take-off and landing (VTOL) aircraft developed by Short Brothers. It was powered by an arrangement of five Rolls-Royce RB108 jet engines, four of which were used for vertical flight and one for conventional horizontal flight. The SC.1 had the distinction of being the first British fixed-wing VTOL aircraft and the first one to transition between vertical and horizontal flight modes; it was also the first VTOL-capable aircraft that was furnished with a fly-by-wire control system.

The SC.1 was designed and produced in response to a Ministry of Supply (MoS) requirement for a suitable aircraft for conducting in-depth flight studies into VTOL flight, as well as specifically into the transition between vertical and horizontal flight. A total of two prototypes were used in test flights between 1957 and 1971. Research data from the SC.1 test programme contributed to the development of the Hawker Siddeley P.1127 and the subsequent Hawker Siddeley Harrier, the first operational VTOL aircraft.

In October 2012, the Short SC.1 received Northern Ireland's first Engineering Heritage Award as a recognition of its significant achievement in the engineering field.

Development

During the 1940s, various nations became interested in developing viable aircraft capable of conducting vertical take-offs and landings (VTOL). During the 1950s, Britain had developed and flight tested the purpose-built Rolls-Royce Thrust Measuring Rig, a crude but pioneering VTOL aircraft that successfully flew as envisioned, demonstrating the viability of the concept as well as providing useful date to build upon. However, while the Thrust Measuring Rig had provided valued insight into the design specifics of VTOL aircraft, such as the requirement for a capable auto-stabilisation system, it suffered from some deficiencies that undermined its value as a platform for further detailed research, such as control lag and a lack of aerodynamic surfaces. There was a need present for an aircraft that would exploit the experienced gained from the Thrust Measuring Rig, and to explore areas that the earlier aircraft was not capable of.

The SC.1 has its origins within a submission by Short Brothers to meet a Ministry of Supply (MoS) request for tender (ER.143T) for a vertical take-off research aircraft, which had been issued in September 1953. On 15 October 1954, the proposed design was accepted by the ministry and a contract was promptly placed for a pair of aircraft to conform with the requirements of Specification ER.143D. As envisioned, the aircraft was to be used for a series of flight tests to investigate its behaviour during the transition between vertical and horizontal flight modes, to determine the optimum and minimum level of assistance required from the auto-stabiliser during the transition process, to uncover likely operational issues, and to develop related support aids and equipment for the pilot to develop an all-weather approach and landing system.

As per the issued order, Short constructed two prototypes, designated XG900 and XG905.

Design

The Short SC.1 was a single-seat low wing tailless delta wing aircraft of approximately 8,000 lb all-up weight (max. 7,700 lb for vertical flight). It was powered by a total of four vertically mounted, lightweight Rolls-Royce RB108 lift engines that provided a total vertical thrust of 8,600 lb, along with a single RB.108 cruise engine in the rear of the aircraft to provide thrust for forward flight. The lift engines were mounted vertically in side-by-side pairs in a central bay so that their resultant thrust line passed close to the centre of gravity of the aircraft. These pairs of engines could be swivelled about transverse axes; they were therefore able to produce vectored thrust for acceleration/deceleration along the aircraft's longitudinal axis.

During conventional flight, the lift engines would be inactive; shortly prior to entering vertical flight, compressed air provided by the single cruise engine would be used to accelerate the startup of the lift engines. Considerable attention was paid during development to the design of the air intake for the engines, while involved a set of 7 variable hinged grills which open in a forward-facing position to increase airflow to the lift engines; flow into the engines had to be relatively consistent and stable to avoid issues such as engine surges and vibration. Initially, the series of scuttles were fitted to the exit nozzles of the lift engines to maintain a low-pressure environment beneath the engines and ensure that that the turbine blades rotated in the correct direction; due to the effectiveness of the intake and engine refinements, the scuttles became unnecessary.

The cockpit of the SC.1 had a mainly conventional nature, while having to accommodate a large number of systems and their controls, providing for a complex environment that a pilot would have to closely monitor. For its role as a research aircraft, it was furnished with a comprehensive recording system; this suite was refined during the testing process in order to capture newly determined quantities and to deal with unsatisfactorily low accuracy of some types of information, such as the electronic recording of temperatures.

The common throttle lever for the four vertical lift engines was the only additional primary control input present; it was operated in a similar manner to that of the Collective pitch level of a rotorcraft. The type possessed two means of exercising attitude control over the aircraft; aerodynamic surfaces which were used during conventional flight, and air jet nozzles during hovers and vertical flight. Bleed air was extracted from the four lift engines (using approximately 10 per cent of the intake air mass/thrust) to power variable nose, tail and wing tip air jet nozzles, which acted to provide pitch, roll and yaw control at low speeds during which there would be insufficient airflow over the aerodynamic surfaces for conventional controls to be effective.

The SC.1 was also equipped with the first "fly-by-wire" control system to be fitted to a VTOL-capable aircraft. This electrically-signalled control system, which also comprised the auto-stabiliser, not only transferred signals from cockpit controls such as the position of the stick, but also monitors feedback signals from the servos to provide stability of the systems itself. A total of three modes of control for the aerodynamic surfaces and/or the nozzle controls were permitted by the system:

  • Aerodynamic surfaces and air-jet nozzles controlled electrically via three independent servo-motors (with "three-way parallel" or "triplex" fail-safe operation) in conjunction with three autostabilizer control systems ("full fly-by-wire").
  • Hybrid-mode, in which the nozzles were controlled by servo/autostabilizer and the aerodynamic surfaces were linked directly to the manual controls.
  • Direct mode, in which all controls were linked to the control stick.

Modes 1 and 2 were selected on the ground; whenever the autostabilizer was in use, the pilot had an emergency override lever available with which to revert to direct control mode in flight. The outputs from the three control systems were compared and a "majority rule" enforced, ensuring that a failure in a single system was overridden by the other two (presumably correct) systems. Any failure in a "fly-by-wire" pathway was indicated to the pilot as a warning, which he could either choose to ignore or respond to by switching to direct (manual) control.

In common with other VTOL aircraft, the Short SC.1 suffered from vertical thrust loss due to the ground effect. Research into this performed on scale models suggested that for the SC.1 these losses would be between 15 per cent and 20 per cent at undercarriage height. Fuel tanks were located along the wing leading edges and in "bag" tanks fitted between the main wing spars. The SC.1 was fitted with a tricycle undercarriage arrangement; while non-retracting, the landing gear could be set between two alternative positions, suited to either conventional and vertical landings. The fixed undercarriage legs were designed specifically for vertical flight; each leg carried a pair of heat-resistant castoring wheels, while the rear undercarriage was also fitted with disc brakes. Long-stroke oleos were used to cushion vertical landings. The robust gear was able to withstand a descent rate of 18 ft (5.5m) per second.

Testing

Constructed at Short's Belfast factory in Northern Ireland, the first SC.1 prototype, XG900, first undertook initial engine runs at this facility. After being transported by sea to England, XG900, which was initially fitted only with the propulsion engine, was delivered to the Royal Aircraft Establishment (RAE) at Boscombe Down to begin the flight test programme. On 2 April 1957, the prototype conducted the type's maiden flight, which was also its first conventional takeoff and landing (CTOL) flight.

Just over a year later, on 26 May 1958, the second prototype made the first tethered vertical flight. Initial flights of the type were performed while attached to a specially-devised gantry, which accommodated only a limited amount of freedom, up to 15 ft vertically and 10 ft off-centre in any direction, vertical velocity was also restricted to less than 10 ft/second; progressive arresting of the aircraft occurred beyond these limitation. It would take off from a grid platform positioned 6 ft above the ground itself in order to circumvent the ground effect phenomenon; considerable effort on the part of Shorts had been made during development of a suitable platform to eliminate the negative impact of ground effect and was redesigned several times. The gantry facility was used for ab initio training and familiarisation purposes for the first 8 pilots to fly the SC.1.

On 25 October of that year, the type performed the first 'free' vertical flight. On 6 April 1960, the first in-flight transition between vertical and horizontal flight was successfully conducted. While successful at transitioning between the two modes, the Short SC.1 had a reputation as being somewhat ungainly as an aircraft.

The SC.1 was publicly displayed at the Farnborough Airshow in 1958 and 1960; it also appeared at the Paris Air Show in 1961, at which it performed a demonstration flight. On 2 October 1963, the second test aircraft crashed in Belfast, killing the pilot, J.R. Green; the cause was later determined to have been a control malfunction. Following the accident, the aircraft was rebuilt and returned to flight for further testing, both continued flying until 1967. By 1965, a total of different 14 pilots had flown the type.

As a result of ground suitability tests, it was determined that conventional runway concrete, pavement, and even grass strips would be adequate for vertical takeoff and landing of the SC.1; however, debris that may be forced out from imperfect surfaces would pose a risk to personnel but not to the aircraft itself. The test programme also allowed experience upon the maintenance and serviceability of a VTOL aircraft to be acquired, even though these were not primary objectives of the design nor the research effort; throughout the programme, an overall average of 2.6 flights were performed per week. While numerous errors with the auto-stabiliser were reported during flights, no fault ever occurred that endangered the aircraft or had any affect upon its control.

Testing found the significance and difficulty in measuring actual engine thrust, leading to further tests using improved intakes and instrumentation, Ultimately, the engines proved to be far less problematic that may have been expected considering the experimental nature of the aircraft and its powerplants; the triplex auto-stabiliser was also discovered to be easy to locate reported faults upon, in part due to the system's self-checking nature. According to a Ministry of Aviation report, the SC.1 was determined to have been an effective research vehicle when operated within the limits imposed by its small size and restricted capacity; it was found that a larger aircraft would be necessary for more extensive instrument flight and guidance equipment assessment flights however.

The SC.1 flew for over ten years, during which it provided a great deal of data that served to influence later design concepts such as the "puffer jet" controls on the Hawker Siddeley P.1127, the precursor of the Hawker Siddeley Harrier. The flight testing work relating to vertical takeoff and landing techniques and technologies also proved to be invaluable, and helped further Britain's lead in the field. The Short SC.1 was ultimately rendered obsolete by the emerging Harrier which, amongst other things, proved that it was unnecessary to carry an additional four engines solely for the purposes of lift-off and landing.

Aircraft on display

The first SC-1 (XG900) became a part of the Science Museum's aircraft collection at South Kensington, London. It had been used until 1971 for VTOL research.

The second SC-1 (XG905) was also preserved and is on static display at the Flight Experience exhibit at the Ulster Folk and Transport Museum, Cultra, Northern Ireland.

Operators

  • United Kingdom : Royal Aircraft Establishment

— — — = = — — —

This text is available under the Creative Commons Attribution-ShareAlike License
Source : Article Short SC.1 of Wikipedia ( authors )

Short SC.1

  • Role : Experimental aircraft.
  • Manufacturer : Short Brothers.
  • Designer : Hugh Graham Convay (Shorts chief engineer).
  • First flight :
    • 2 April 1957 (CTOL).
    • 26 May 1958 (VTOL).
  • Retired : 1971.
  • Status : Retired and preserved.
  • Primary user : Royal Aircraft Establishment.
  • Number built : 2.
  • Specifications

  • Crew : 1.
  • Length : 25 feet 6 inches (7.77 m).
  • Height : 10 ft 8 in (3.25 m).
  • Wingspan : 23 feet 6 inches (7.16 m).
  • Wing area : 211.5 square feet (19.65 m²).
  • Wing loading : 38.1 lb/ft2 (186.0 kg/m²).
  • Airfoil : NACA 0010.
  • Aspect ratio : 2.61:1.
  • Empty weight : 6,260 pounds (2,839 kg).
  • Loaded weight (CTOL) : 8,050 lb (3,650 kg).
  • Loaded weight (VTOL) : 7,700 lb (3,490 kg)).
  • Maximum speed : 246 mph (214 kts, 396 km/h).
  • Range : 150 miles (130 NM, 240 km).
  • Service ceiling : 8,000 ft (2,440 m).
  • Rate of climb : 700 ft/min (3.6 m/s).
  • Thrust/weight :
    • (CTOL) : 0.265.
    • (VTOL) : 1.11.
  • Powerplant :
    • Lift : Four Rolls-Royce RB108 turbojets, 2,130 lbf (9.47 kN) each.
    • Forward flight : One Rolls-Royce RB108 turbojet, 2,130 lbf.

— — — = = — — —

This text is available under the Creative Commons Attribution-ShareAlike License
Source : Article Short SC.1 of Wikipedia ( authors )
Short SC.1 : Your comments on this subject
Powered by Disqus
Top
Legal Credits FAQ Help Site Map

Terms of use for the services available on this site

By using this Website, Users agree to the following terms of use and rules :

Definitions

  • Webmaster : Head Administrator with all authority over the management and development of the Website.
  • Administrator : Anyone that was given by the Webmaster full or partial access to the Website's structure or with moderation rights on messages posted by Users.
  • User or Visitor : Any person visiting the Website pages.
  • Website : The following provisions apply to a single Website accessible via the www.aircraftube.com, www.aircraftube.org, www.aircraftube.net and www.all-aircraft.com. URL's
  • Service : All free informations and tools contained on the Website.
  • Comments : All text written by users on Blogs and comment pages available on the Website.
  • Media : All media available on or through the Website. One must distinguish the local media (photos, curves, drawings) and the external media (videos) which the Website refers.
  • Purpose of this site

    The purpose of this non-commercial site is purely educational. Reflecting a passion, it is also there to preserve the memory of all those who gave their lives, their health or energy in the name of freedom, aviation safety or simply our passenger comfort.

    Copyright

    Some media may have escaped the vigilance of Administrators with regard to copyrights. If a user reports copyright infringement, he will be asked to prove that he is indeed the rights's owner for the concerned media. If so, his decision on the Administrator's next action will be respected: A total suppression of the Media on the Website, or the addition of some owner's reference. The publication of a media on the internet normally having as a goal to make it visible to many people, the Administrators expect in any case that the second option will be most often chosen.

    Pursuant to the Law on copyright and related rights, the user has the right to download and reproduce information on the Website for personal use and provided that the source is mentionned. They cannot however be used for commercial or advertising purposes.

    Using Blogs and filing comments

  • Moderator : The Administrator reserves the right to prevent the publication of comments that are not directly related to the Service without providing any explanation. Similarly, all insults, out of scope or unethical material will be banned.
  • Identification : Persons wishing to post a comment or use any form of contact are required to provide identification by the means of a valid e-mail address.
  • Responsibilities : Comments are posted on the Website under the unique responsability of their authors and the Administrators may in no case be liable for any statements or claims that the users might have issued.
  • As the comment system is hosted and maintained on servers external to the Website, the Administrators may in no circumstances be held responsible for the use that administrators of these servers or other third parties may have with those comments or filed data.

    Content Liability

    The Administrators carefully check the reliability of the sources used. They cannot, however, guarantee the accuracy of any information contained on the Website, partly because of the multiple sources from which they come.

    JavaScript and cookies - Storing information

    This Website imperatively uses JavaScript and cookies to function properly. Neither of these technologies, or other means shall in no case be used on the Website for the retention or disclosure of personal information about Visitors. Exceptions to this rule will involve storing the Users banned for inappropriate comments they might have given as well as contact information for Users wishing to subscribe to future newsletters.

    When a user accesses the Website, the corresponding servers may automatically collect certain data, such as IP address, date and time of Website access, viewed pages and the type of browser used. This information is kept only for the purpose of measuring the number of visitors to the different sections of the site and make improvements.

    Donations - Advertising

    To continue providing the Service for free, the Webmaster reserves the right to insert advertising or promotional messages on any page of the Site. In the same idea, any donations will only by used to cover the running costs of the site, such as hosting, connection fees, hardware and software necessary for the development and maintenance of the Website.

    Links and other websites

    Administrators shall in no case be liable for the non-availability of websites operated by third parties to which users would access through the Website.

    Administrators assume no liability for any content, advertising, products and/or services available on such third party websites. It is reminded that those sites are governed by their own terms of use.

    Placing a link to third party sites or authorize a third party to include a link on their website refering to this Website does not mean that the Administrators recommend in any way the products or services offered by these websites.

    Modifications

    The Webmaster reserves the right to modify at any time without notification the present terms of use as well as all content or specific functionality that the Website offers.

    The modified terms and conditions immediately apply to the using Visitor when changes come online. Visitors are invited to consult the site regularly on the most current version of the terms and conditions

    Governing Law and Jurisdiction

    These general conditions are governed by Belgian law.

    In case of dispute regarding the interpretation and/or execution of the above terms, the parties agree that the courts of the district of Nivelles, Belgium shall have exclusive jurisdiction power.

    Credits page

    Wikipedia.org

    Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia.

    Youtube

    YouTube is a video-sharing website on which users can upload, view and share videos.

    Special thanks to all Youtube quality aviation vids providers, specially (Those I forgot, please excuse me or report) :

    Airboyd
    Andys Video
    Aviation videos archives
    Bomberguy
    Classic Aviation TV
    Historical Aviation Film Unit
    Horsemoney
    Jaglavaksoldier
    Joluqa Malta
    Just Planes
    Koksy
    Classic Airliners & Vintage Pop Culture
    Memorial Flight
    Octane130
    Okrajoe
    SDASM archives
    Spottydog4477
    The Aviators TV
    Valentin Izagirre Bengoetxea
    Vexed123
    VonBerlich
    Zenos Warbirds

    Bundesarchiv

    The German Federal Archives or Bundesarchiv are the National Archives of Germany.

    FAQ

    I don't see my comments any more!

    Please note that each page has it's own comment entry. So, if you enter a comment i.e. on the B-747, you will only see it on that related page.

    General comments are accessed via the "BLOG En" button.

    Comments are moderated, so please allow some delay before they appear, specially if you are outside Europe.

    Menus are developing below the page, because they are too long!

    But they remain accessible, for example by scrolling the mouse wheel, or with your finger (on the menu) on a smartphone or tablet.

    I see adds on all videos.

    Use a good free add remover software.

    The site is loading random pages at startup.

    We think it is a good way to bring back the memory of aircraft, persons or events sometimes quite forgotten.

    HELP PAGE

    Why this site?

    Discovery

    This website is dedicated to one's aeronautical passion (which I hope we share) and was realised mainly as an educationnal tool. Knowing that, you'll notice that each new visit brings random topics for the purpose of making new discoveries, some achievements or characters certainly not deserving the oblivion into which they have sometimes fallen.

    By these pages, we also want to pay tribute to all those who gave at one time or another, their lives or health in the name of freedom, aeronautical security or simply our comfort.

    Centralisation

    Internet is full of websites dedicated to aviation, but most are dedicated to subjects or periods that are very limited in space or time. The purpose of this site is to be as general as possible and thus treats all events as well as characters of all stripes and times while putting much emphasis on the most significant achievements.

    The same years saw birth of technologies like photography and cinema, thus permitting illustration of a large part of important aeronautical events from the start. Countless (and sometimes rare) media recently put online by enthousiasts finally give us access to these treasures, but the huge amount of information often makes things a little messy. A centralization effort is obviously most needed at this level.

    All persons who directly or indirectly contributed to the achievement or posting of such documents are here gratefully acknowledged.

    General

    Fluid website

    This site automatically fits the dimensions of your screen, whether you are on a desktop computer, a tablet or a smartphone.

    Bilingual website

    You can change the language by clicking on the flag in the upper left or via "Options" in the central menu. Of course, the videos remain in the language in which they were posted ...

    Browser compatibility

    The site is not optimized, or even designed to run on older browsers or those deliberately deviating from standards. You will most probably encounter display issues with Internet Explorer. In this case, it is strongly recommended installing a modern (and free!) browser that's respecting the standards, like Firefox, Opera, Chrome or Safari.

    Cookies and Javascript

    This site uses cookies and JavaScript to function properly. Please ensure that your browser is configured accordingly. Neither of these technologies, or other means shall in no case be used on the Site for the retention or disclosure of personal information about its Visitors. See the "Legal" page for more on this subject.

    Website layout

    Left menus

    Because of the lack of space on smartphones and small tablets, these menus are hidden. Everything is nevertheless accessible via the main menu option, located between the video and photo sections. This menu is placed there for compatibility reasons with some browsers, which play the videos over the menus.

    "Search" and "Latest" :
    The link "In Titles" restricts the search to the titles of different forms. Use this option if you are looking for a plane, a constructor, a pilot or a particular event that could have been treated as a subject.

    The link "In Stories" will bring you to a search in all texts (the "Story" tab) and will take more time. The search term will appear highlighted in green when opening the corresponding story.

    Would you believe, "Timeline" will show all subjects in chronological order.

    "Random" will reload the entire page with a new random topic.

    The bottom section keeps you abreast of the latest five entries. New topics are added regularly. Don't hesitate to come visit us often : add bookmark.

    Blogs and Comments central section

    Under the photos section comes the comments tabs window :

    You can enter general comments in your own language via one of the two buttons on the left (BLOG EN and BLOG FR). Note that these buttons are accessible regardless of the language to allow some participation in the other language.

    All comments are subject to moderation and will be published only if they comply with the basic rules of decorum, while remaining relevant to the purpose of this site.

    The third tab allows you to enter comments on the shown topic and is bilingual. Personal anecdotes, supplements and other information questions will take place here.

    The "Story" tab shows the explanatory texts. They are most often taken from Wikipedia, a site where we participate regularly.

    The "Data" tab is reserved for list of features and specifications.

    Right menus

    On a smartphone, the lack of space is growing and this menu is moved to the bottom of the page to give priority to videos and pictures.

    The top right icons are links to videos posted by third parties (on their own responsabilities) or by ourselves. The link below these icons will take you to the channel of the one who posted the video. Feel free to suggest other videos if you think they are of some interest (Use the BLOG button or the "Contact" link).