(Gloster) Meteor @·AIRCRAFTUBE

  • Gloster Meteor F.III
Gloster Meteor F.III
    Gloster Meteor F.III
  • Meteor NF11 - Kemble - England - 2009
Meteor NF11 - Kemble - England - 2009
    Meteor NF11 - Kemble - England - 2009
  • Meteor F-8 - Brazil Air Force
Meteor F-8 - Brazil Air Force
    Meteor F-8 - Brazil Air Force
  • NF.11 - 151Sqn - 1955
NF.11 - 151Sqn - 1955
    NF.11 - 151Sqn - 1955
  • Gloster Meteor IAF
Gloster Meteor IAF
    Gloster Meteor IAF
  • Gloster Meteor Prone
Gloster Meteor Prone
    Gloster Meteor Prone
  • Meteor F8
Meteor F8
    Meteor F8
  • Meteor F4
Meteor F4
    Meteor F4
  • Trent-Meteor
Trent-Meteor
    Trent-Meteor
  • Meteor F9-40
Meteor F9-40
    Meteor F9-40
  • Gloster Meteor Sapphire - Farnborough 1951
Gloster Meteor Sapphire - Farnborough 1951
    Gloster Meteor Sapphire - Farnborough 1951
  • Gloster Meteor IAF 1954
Gloster Meteor IAF 1954
    Gloster Meteor IAF 1954
  • 77_Sqn_RAAF - Korea
77_Sqn_RAAF - Korea
    77_Sqn_RAAF - Korea
  • Meteor NF.14 - 264Sq RAF - 1965
Meteor NF.14 - 264Sq RAF - 1965
    Meteor NF.14 - 264Sq RAF - 1965
  • Gloster Meteor - Melsbroek - Belgium
Gloster Meteor - Melsbroek - Belgium
    Gloster Meteor - Melsbroek - Belgium
  • Meteor F.1 - 616 Squadron
Meteor F.1 - 616 Squadron
    Meteor F.1 - 616 Squadron
  • Gloster Meteor F8
Gloster Meteor F8
    Gloster Meteor F8
  • Meteor F.4 - 1955
Meteor F.4 - 1955
    Meteor F.4 - 1955
  • Meteor NF11
Meteor NF11
    Meteor NF11
  • Gloster Meteor
Gloster Meteor
    Gloster Meteor
  • Gloster Meteor Gloster Meteor
    Gloster Meteor

Gloster Meteor

The Gloster Meteor was the first British jet fighter and the Allies' first operational jet. Designed by George Carter, it first flew on 5 March 1943 and commenced operations on 27 July 1944 with 616 Squadron of the Royal Air Force. The Gloster Meteor was not an aerodynamically advanced aircraft, nor even the world's fastest aircraft on introduction, but the Gloster design team succeeded in producing an effective jet fighter that served the RAF and other air forces for decades. Meteors saw action with the Royal Australian Air Force in the Korean War and remained in service with numerous air forces until the 1970s.

Development of a turbojet-powered fighter by Sir Frank Whittle's firm, Power Jets Ltd., and the Gloster Aircraft Company began in November 1940. The first British jet powered aircraft, the single-engined Gloster E28/39 prototype, had its maiden flight on 15 May 1941. The Air Ministry subsequently contracted for the development of a twin-engined jet fighter under Specification F9/40. Originally the aircraft was to have been named Thunderbolt, but to avoid confusion with the USAAF P-47 Thunderbolt the name was changed to Meteor.

The Meteor's construction was all-metal with a tricycle undercarriage and conventional low, straight wings, featuring turbojets mid-mounted in the wings with a high-mounted tailplane to keep it clear of the jet exhaust.

Eight prototypes were produced. Delays with getting type approval for the engines meant that although taxiing trials were carried out it was not until the following year that flights took place. The fifth prototype, DG206, powered by two de Havilland Halford H.1 engines due to problems with the intended Whittle W.2 engines, was the first to become airborne on 5 March 1943 from RAF Cranwell, piloted by Michael Daunt Development then moved to Newmarket Heath and, later, a Gloster-owned site at Moreton Valence. The first Whittle-engined aircraft, DG205/G, flew on 17 June 1943 (it crashed shortly after take-off on 27 April 1944) and was followed by DG202/G in July. DG202/G was later used for deck-handling tests aboard aircraft carrier HMS Pretoria Castle. DG203/G made its first flight on 9 November 1943 but was soon relegated to a ground instructional role. DG204/G (powered by Metrovick F.2 engines) first flew on 13 November 1943 and crashed on 1 April 1944. DG208/G made its debut on 20 January 1944, by which time the majority of design problems had been identified and a production design approved.

The two remaining prototypes never flew. DG209/G was used as an engine test-bed by Rolls-Royce. DG207/G was intended to be the basis for the Meteor F.2 with de Havilland engines, but when the engines were diverted to the de Havilland Vampire the idea was quietly forgotten.

On 12 January 1944, the first Meteor F.1, serial EE210/G, took to the air from Moreton Valence. It was essentially identical to the F9/40 prototypes except for the addition of four nose-mounted 20 mm Hispano cannon and some tweaks to the canopy to improve all-round visibility. For the production Meteor F.1, the engine was switched to the Whittle W.2 design, by then taken over by Rolls-Royce. The contemporary W.2B/23C turbojet engines produced 7.56 kN of thrust each, giving the aircraft a maximum speed of 417 mph (670 km/h) at 3,000 m and a range of 1,610 km. The Meteor Mk.I was 12.5 m long with a span of 13.1 m, with an empty weight of 3,690 kg and a maximum takeoff weight of 6,260 kg.

Typical of early jet aircraft, the Meteor F.1 suffered from stability problems at high transonic speeds, experiencing large trim changes, high stick forces and self-sustained yaw instability (snaking) due to airflow separation over the thick tail surfaces.

Operational service

The first 20 aircraft were delivered to the Royal Air Force on 1 June 1944 with one example also sent to the U.S. in exchange for a Bell YP-59A Airacomet for comparative evaluation.

No. 616 Squadron RAF was the first to receive operational Meteors, 14 of them. The squadron was based at RAF Culmhead, Somerset and was previously equipped with the Spitfire VII. After a short conversion course at Farnborough for the six leading pilots, the first aircraft were delivered in July. The squadron was soon moved to RAF Manston on the east Kent coast and, within a week, 30 pilots were deemed successfully converted.

The RAF initially reserved the aircraft to counter the V-1 flying bomb threat with No.616's Meteors seeing action for the first time on 27 July 1944 with three aircraft active over Kent. After some initial problems, especially with jamming guns, the first two V1 "kills" occurred on 4 August. In total, the Meteor accounted for 14 flying bombs. The anti-V1 missions of 27 July 1944 were the Meteor's (and the Royal Air Force's) first operational jet combat missions.

After the end of the V-1 threat, and the introduction of the supersonic V-2, the Meteor F 1 was not deployed further in combat against the Luftwaffe. The RAF was at this time forbidden to fly Meteor missions over German-held territory for obvious intelligence security reasons, and in any case the greatly improved F 3 was in prospect. No. 616 Squadron briefly moved to RAF Debden to allow USAAF bomber crews to gain experience in facing jet-engine foes before moving to Colerne, Wiltshire.

No. 616 Squadron exchanged its F 1s for the first Meteor F 3s on 18 December 1944. This was a substantial improvement over the earlier mark, although the basic design still had not reached its full potential. Wind tunnel and flight tests demonstrated that the original short nacelles, which extended fore and aft of the wing, contributed heavily to compressibility buffeting at high speed. New, longer nacelles not only cured some of the compressibility problems but added 120 km/h (75 mph) at altitude, even without upgraded powerplants. The last batch of Meteor F 3s featured the longer nacelles while other F 3s were retrofitted in the field with the new nacelles. The F 3 also had the new Rolls-Royce Derwent engines, increased fuel capacity, and a new larger, more strongly raked bubble canopy.

On 20 January 1945, four Meteors were moved to Melsbrook in Belgium. In March, the entire squadron was moved to Gilze-Rijen and, then in April, to Nijmegen. The Meteors flew armed reconnaissance and ground attack operations without encountering any German jet fighters. By late April, the squadron was based at Faßberg, Germany and suffered its first losses when two pilots collided in poor visibility. The war ended with the Meteors having destroyed 46 German aircraft through ground attack and having faced more problems through misidentification as the Me 262 by Allied aircraft and flak than from the Luftwaffe.

The next major change was the Meteor F 4 that went into production in 1947, by which time there were 16 RAF squadrons equipped with Meteors. The first F 4 prototype flew on 17 May 1945. The F 4 had the Rolls-Royce Derwent 5 engines (a smaller version of the famous Nene), the wings were 86.4 cm shorter than the F 3 and had blunter tips (derived from the world speed record prototypes), a stronger airframe, fully pressurized cockpit, lighter ailerons (to improve maneuverability) and rudder trim adjustments to reduce snaking. The F 4 could also be fitted with a drop tank under each wing while experiments were performed with carriage of underwing stores and also in lengthened fuselage models. The F 4 was 170 mph faster than the F 1 at sea level (585 against 415), although the reduced wings impaired its rate of climb.

Because of the increased demand, F 4 production was divided between Gloster and the Armstrong Whitworth factory at Bagington. The majority of early F 4s did not go directly to the RAF : 100 were exported to Argentina (and saw action in the 1955 revolution, one being shot down on 16 September 1955 near Rio Santiago) while in 1947, only RAF Nos. 74 and 222 Squadrons were fully equipped with the F 4. Nine further RAF squadrons were upgraded over 1948. From 1948, 38 F 4s were exported to the Dutch, equipping four squadrons (322, 323, 326 and 327) split between bases in Soesterberg and Leeuwarden until the mid-1950s. In 1949, only two RAF squadrons were converted to the F 4, Belgium was sold 48 aircraft in the same year (going to 349 and 350 Squadrons at Beauvechain) and Denmark received 20 over 1949-50. In 1950, three more RAF squadrons were upgraded, including No. 616 and, in 1951, six more. In 1950, a single order of 20 F 4s was delivered to Egypt.

A modified two-seater F 4 for jet-conversion and advanced training was tested in 1949 as the T 7. It was accepted by the RAF and the Fleet Air Arm and became a common addition to the various export packages (for example 43 to Belgium 1948-57, a similar number to the Netherlands over the same period, two to Syria in 1952, six to Israel in 1953, etc.). Despite its limitations - unpressurized cockpit, no armament, limited instructor instrumentation - over 650 T 7s were manufactured.

As improved jet fighters began to emerge, Gloster decided to perform a significant redesign of the F 4 to keep it up to date, while retaining as much of the manufacturing tooling of the F 4 as possible. The result was the Meteor F 8 (G-41K) which was to be the definitive production model, serving as a major Royal Air Force single-seat fighter until the introduction of the Hawker Hunter and the Supermarine Swift.

The first prototype F 8 was a modified F 4, followed by a true prototype, VT150, that flew on 12 October 1948 at Moreton Valence. Flight testing of the F 8 prototype led to the discovery of an aerodynamic problem : when ammunition was expended, the aircraft became tail-heavy and unstable around the pitch axis due to the weight of fuel retained in fuselage tanks no longer being balanced by the ammunition. Gloster designers cleverly solved the problem by substituting the tail of the abortive "G 42" single-engine jet fighter. The F 8 and other production variants were to successfully use the new tail design; the new tail gave the later Meteors a distinctive appearance, with taller straighter edges compared to the rounded tail of the F 4s and earlier marks.

The F 8 also featured a fuselage stretch of 76 centimetres (30 inches), intended to shift the aircraft's centre of gravity and also eliminate the use of ballast that had been necessary in earlier marks. The F 8 incorporated uprated engines, Derwent 8s, with 16 kN (or 3,600 lbf) thrust each combined with structural strengthening, a Martin Baker ejection seat and a "blown" teardrop cockpit canopy that provided improved pilot visibility. Between 1950 and 1955, the Meteor F 8 was the mainstay of RAF Fighter Command, and served with distinction in combat in Korea with the RAAF as well as operating with many air forces worldwide, although it was clear that the original design was obsolescent compared to contemporary swept-wing fighters such as the North American F-86 Sabre and the Soviet MiG-15.

Initial deliveries of the F 8 to the RAF were in August 1949, with the first squadron receiving its fighters in late 1950. Like the F 4, there were strong export sales of the F 8. Belgium ordered 240 aircraft, the majority assembled in Belgium. The Netherlands had 160 F 8s, equipping seven squadrons until 1955. Denmark had 20, ordered in 1951; they were to be the last F 8s in front-line service in Europe. The RAAF ordered 94 F 8s, which served in Korea - see below. Despite arms embargoes, both Syria and Egypt received F 8s from 1952, as did Israel (where they served until 1961). On 1 September 1954, two Israeli F 8s shot down two Egyptian Vampires and in the 1956 Suez Crisis, F 8s were employed by both Egypt and Israel in ground-attack roles. After the crisis, both Egypt and Syria disposed of their Meteors in favour of various MiG variants. In a later order, Brazil received around 60 ex-RAF F 8s in 1963.

In the 1950s, Meteors also were developed into effective photo-reconnaissance, training and night fighter versions. The fighter-reconnaissance (FR) versions were the first to be built, replacing the ageing Spitfires and Mosquitos then in use. Two FR 5s were built on the F 4 body, one was used for nose section camera tests, the other broke-up in midair while in testing over Moreton Valence. On 23 March 1950, the first FR 9 flew. Based on the F 8, it was 20 cm longer with a new nose incorporating a remote-control camera and window and was also fitted with additional external ventral and wing fuel tanks. Production of the FR 9 began in July. No. 208 Squadron, then based at Fayid, Egypt was the first to be upgraded followed by the 2nd Tactical Air Force in West Germany, No. 2 Squadron RAF at Bückeburg and No. 79 Squadron RAF at RAF Gutersloh flew the FR 9 from 1951 until 1956. In Aden, No. 8 Squadron RAF was given the FR 9 in November 1951 and used them until 1961. Ecuador (with 12 aircraft), Israel (7) and Syria (2) were the only foreign customers for the FR 9.

In addition to the armed, low-altitude operation, tactical FR 9 variant, Gloster also developed the PR 10 for high-altitude missions. The first prototype flew on 29 March 1950 and was actually converted into the first production aircraft. Based on the F 4, it had the F 4-style tail and the longer wings of the earlier variant. All the cannons were removed and a single camera placed in the nose with two more in the rear fuselage; the canopy was also changed. The PR 10 was delivered to the RAF in December 1950 and were given to No.2 and No. 541 Squadrons in Germany and No. 13 Squadron RAF in Cyprus. The PR 10 was rapidly phased out from 1956 with improving surface to air missile technology and newer, faster aircraft rendering it dangerously obsolete.

Night fighter

As a night-fighter, the Meteor again replaced the Mosquito, however, it was never more than an interim measure. The Mosquito night fighter had remained in use even as it was largely obsolete. Gloster proposed a night fighter design to meet the Air Ministry specification for the Mosquito replacement. Based on the two seater trainer, the pilot in the front seat and the Navigator in the rear. Once accepted however, the work passed to Armstrong Whitworth for both the detail design and production; the first prototype flying on 31 May 1950. Although based on the T.7 twin seater, it used the fuselage and tail of the F 8, and the longer wings of the F 3. An extended nose contained the US built Air Intercept radar. As a consequence the 20 mm cannons were moved into the wings, outboard of the engines. A ventral fuel tank and wing mounted drop tanks completed the "Armstrong Whitworth Meteor" NF 11.

Nos. 29, 141 and 85 Squadrons were given the NF 11 in 1951 and the aircraft was rolled out across the RAF until the final deliveries in 1955. A "tropicalized" version of the NF 11 for Middle East service was developed; first flying on 23 December 1952 as the NF 13. The aircraft equipped No. 219 Squadron RAF at Kabrit and No. 39 Squadron at Fayid, both in Egypt. The aircraft served during the Suez crisis and remained with No. 39 Squadron when they were withdrawn to Malta until 1958. The aircraft had a number of problems, notably the limited visibility through the heavily framed T 7 canopy made landings tricky and the external fuel tanks under the wings tended to break-up when the wing cannon were fired. Gun harmonization, normaly set to about 400 yards, was poor due to flexing of the wings in flight. Belgium (with 24 aircraft), Denmark (20), Australia (one) and France (41) were the foreign customers for the NF 11. Ex-RAF NF 13s were sold to Syria (with six aircraft), Egypt (six) and Israel (also six). Some of the French aircraft remained in operation as test beds into the 1980s.

As radar technology developed, a new Meteor night-fighter was developed to use the APS-21 system. The NF 12 first flew on 21 April 1953. It was similar to the NF 11 but had a nose section 43.2 cm longer; this altered the centre of gravity and the tailplane was enlarged to compensate. The NF 12 also had the new Rolls-Royce Derwent 9 engines and the wings were reinforced to handle the new engine. The RAF operated the NF 12 from August 1953 with seven squadrons equipped up to 1956; the aircraft was replaced over 1958-59. Because of the "sensitive" nature of the radar system, no NF 12s were offered for export.

The final Meteor night-fighter was the NF 14. First flown on 23 October 1953, the NF 14 was based on the NF 12 but had an even longer nose to accommodate new equipment pushing total length to 15.5 metres and a larger bubble canopy to replace the framed T 7 version. Just 100 NF 14s were built; they first entered service in February 1954 beginning with No. 25 Squadron and were being replaced as early as 1956 with the Gloster Javelin. Overseas, they remained in service a little longer, serving with No. 60 Squadron at Tengah, Singapore until 1961. As the NF 14 was replaced, some 14 were converted to training aircraft as the NF(T) 14 and given to No. 2 Air Navigation School on Thorney Island where they served until 1965.

Service during the Korean War

The Royal Australian Air Force acquired 113 Meteors between 1946 and 1952, 94 of which were the F 8 variant. F 8 Meteors saw extensive service during the Korean War with No. 77 Squadron RAAF, which was part of British Commonwealth Forces Korea, and had personnel from other Commonwealth air forces attached to it. The squadron arrived in Korea equipped with P-51D Mustangs. It did jet conversion training at Iwakuni, Japan, and returned to Korea in April 1951 with about 30 Meteor F 8s and T 7s. The squadron moved to Kimpo in June, and was declared combat-ready the following month. There was some apprehension, as the F 8 was clearly inferior in most respects to the communist forces' MiG-15, and was superior to the F-86 Sabre only in rate-of-climb and acceleration.

No. 77 squadron first flew Meteors in a combat mission on 30 July 1951. The squadron had mainly been trained in the ground attack role, and had difficulties when assigned to bomber escort duty at sub-optimum altitudes. On 29 August 1951, eight Meteors were on escort duty in "MiG Alley" when they were engaged by six MiG-15s; one Meteor was lost and two damaged, and 77 Squadron did not officially destroy any enemy aircraft on this occasion On 27 October, the squadron achieved its first probable followed by two probables six days later. On 1 December, during a clash between 12 Meteors and some 40 MiG-15s, the squadron had its first two confirmed victories : FLGOFF Bruce Gogerly made the first kill. However, this occurred at the cost of four Meteors destroyed. As a result, bomber escort was taken over by the USAF and 77 Squadron returned to ground-attack duties. The Meteor performed well but proved vulnerable to ground fire, as the rocket sights required a long level run to operate effectively.

By the end of the conflict, the squadron had flown 4,836 missions, destroying six MiG-15s, over 3,500 structures and some 1,500 vehicles. About 30 Meteors were lost to enemy action in Korea - the vast majority of these were shot down by anti-aircraft fire while serving in a ground-attack capacity.

Record setting

Late in 1945, two F Mk.3 Meteors were modified for an attempt on the world air speed record. On 7 November 1945 at Herne Bay in Kent, UK, Group Captain H.J. (Willy) Wilson set the first air speed record by a jet aircraft of 606 mph (975 km/h) TAS. A small plaque commemorating this achievement can be found in Macari's Cafe, Herne Bay.

In 1946, Group Captain Edward "Teddy" Donaldson broke this record with a speed of 616 mph (991 km/h) TAS, in EE549, a Meteor F 4. Test pilot Roland Beamont had previously taken the same aircraft to its compressibility limit at 632 mph, but not under official record conditions, and outside its official safety limits.

In 1947, S/L Janusz Żurakowski set an international speed record : London-Copenhagen-London, 4-5 April 1950 in a production standard F 8 (VZ468). The Danes were suitably impressed and purchased the type soon after.

Another "claim to fame" was the Meteor's ability to perform the "Żurabatic Cartwheel", a new aerobatics manoeuvre, named after the Gloster acting Chief Test Pilot, first accomplished in the Gloster Meteor G-7-1 prototype at the 1951 Farnbrough Air Show where the Meteor, due to its unique location of widely-set engines could have individual engines throttled back and forward to achieve a seemingly stationary vertical cartwheel. Many Meteor pilots would go on to "prove their mettle" by attempting the same feat.

Other uses

Production of the Meteor continued until 1954 with almost 3,900 made, mainly the F 8 variant. As the Meteor was progressively relegated to secondary duties in later years, target tug, drone and specialized test vehicles were added to the increasingly diverse roles that this first-generation jet fighter took on.

Variants

In 1945 a single Meteor I, EE227, was fitted with two Rolls-Royce Trent turboprop engines as a flying testbed, making it the world's first turboprop-powered aircraft.

  • Meteor G.41 : Eight prototypes.
  • Meteor F 1 : First production aircraft built between 1943 and 1944.
  • Meteor F 2 : Alternate engined version - only one built.
  • Meteor F 3 : Derwent I powered with sliding canopy.
  • Meteor F 4 : Derwent 5 powered with strengthened fuselage.
  • Meteor FR 5 : One-off fighter reconnaissance version of the F 4.
  • Meteor T 7 : Two-seat trainer.
  • Meteor F 8 : Greatly improved from the F 4. Longer fuselage, greater fuel capacity, standard ejection seat and modified tail (derived from the E.1/44). This variant was a prolific frontline fighter in RAF squadron service, 1950-54. One experimental Gloster Meteor F8 "Prone Pilot" conversion was modified by Armstrong Whitworth.
  • Meteor FR 9 : Fighter reconnaissance version of the F 8.
  • Meteor PR 10 : Photo reconnaissance version of the F 8.
  • Meteor NF 11 : Night Fighter variant with Airborne Intercept radar.
  • Meteor NF 12 : Longer nosed version of the NF 11 with American radar.
  • Meteor NF 13 : Tropicalised version of the NF 11 for overseas service.
  • Meteor NF 14 : NF 11 with new two-piece canopy.
  • Meteor U 15 : Drone conversion of the F 4.
  • Meteor U 16 : Drone conversion of the F 8.
  • Meteor TT 20 : High speed target towing conversion of the NF 11.
  • Meteor U 21 : Drone conversion of the F 8.

Operators

Argentine Air Force, Royal Australian Air Force, Belgian Air Force, Brazilian Air Force, Royal Canadian Air Force, Royal Danish Air Force, Ecuadorian Air Force, Royal Egyptian Air Force, French Air Force, Israeli Air Force, Netherlands Air Force, Royal New Zealand Air Force, Royal Norwegian Air Force, South African Air Force, Swedish Air Force (Operated by Svensk Flygtjanst under Air Force contract), Syrian Air Force, Royal Air Force, United States Army Air Force tested one aircraft and returned it to UK after tests.

— — — = = — — —

This text is available under the Creative Commons Attribution-ShareAlike License
Source : Article Gloster meteor of Wikipedia ( authors )

Specifications (Meteor F MK.I)

  • Crew: 1.
  • Length: 41.24 ft (or 12.57 m).
  • Height: 12.99 ft (or 3.96 m).
  • Wingspan: 43.01 ft (or 13.11 m).
  • Wing area: 350 ft² (or 32.52 m²).
  • Wing loading: 44.9 lb/ft² (or 149 kg/m²).
  • Empty weight: 8,139 lb (or 3,692 kg).
  • Loaded weight: 13,819 lb (or 6,268 kg).
  • Maximum speed: Mach 0.71, 410 mph at 10,000 ft (or 660 km/h at 3,050 m).
  • Range: 500 mi (or 800 km).
  • Service ceiling 34,000 ft (or 11,500 m).
  • Rate of climb: 2,155 ft/min (or 24.6 m/s).
  • Time to altitude: 9.0 min to 30,000 ft (or 9,145 m).
  • Thrust/weight: 0.45.
  • Powerplant: Two Rolls-Royce W.2B/23 Welland turbojets.
  • Thrust: 1,700 lbf (or 7.6 kN) each.
  • Armament: Four 20 mm British Hispano cannons and provision for up to sixteen "60lb" 3 in rockets under outer wings.

— — — = = — — —

This text is available under the Creative Commons Attribution-ShareAlike License
Source : Article Gloster meteor of Wikipedia ( authors )
Gloster Meteor : Your comments on this subject
Powered by Disqus
Top
Legal Credits FAQ Help Site Map

Terms of use for the services available on this site

By using this Website, Users agree to the following terms of use and rules :

Definitions

  • Webmaster : Head Administrator with all authority over the management and development of the Website.
  • Administrator : Anyone that was given by the Webmaster full or partial access to the Website's structure or with moderation rights on messages posted by Users.
  • User or Visitor : Any person visiting the Website pages.
  • Website : The following provisions apply to a single Website accessible via the www.aircraftube.com, www.aircraftube.org, www.aircraftube.net and www.all-aircraft.com. URL's
  • Service : All free informations and tools contained on the Website.
  • Comments : All text written by users on Blogs and comment pages available on the Website.
  • Media : All media available on or through the Website. One must distinguish the local media (photos, curves, drawings) and the external media (videos) which the Website refers.
  • Purpose of this site

    The purpose of this non-commercial site is purely educational. Reflecting a passion, it is also there to preserve the memory of all those who gave their lives, their health or energy in the name of freedom, aviation safety or simply our passenger comfort.

    Copyright

    Some media may have escaped the vigilance of Administrators with regard to copyrights. If a user reports copyright infringement, he will be asked to prove that he is indeed the rights's owner for the concerned media. If so, his decision on the Administrator's next action will be respected: A total suppression of the Media on the Website, or the addition of some owner's reference. The publication of a media on the internet normally having as a goal to make it visible to many people, the Administrators expect in any case that the second option will be most often chosen.

    Pursuant to the Law on copyright and related rights, the user has the right to download and reproduce information on the Website for personal use and provided that the source is mentionned. They cannot however be used for commercial or advertising purposes.

    Using Blogs and filing comments

  • Moderator : The Administrator reserves the right to prevent the publication of comments that are not directly related to the Service without providing any explanation. Similarly, all insults, out of scope or unethical material will be banned.
  • Identification : Persons wishing to post a comment or use any form of contact are required to provide identification by the means of a valid e-mail address.
  • Responsibilities : Comments are posted on the Website under the unique responsability of their authors and the Administrators may in no case be liable for any statements or claims that the users might have issued.
  • As the comment system is hosted and maintained on servers external to the Website, the Administrators may in no circumstances be held responsible for the use that administrators of these servers or other third parties may have with those comments or filed data.

    Content Liability

    The Administrators carefully check the reliability of the sources used. They cannot, however, guarantee the accuracy of any information contained on the Website, partly because of the multiple sources from which they come.

    JavaScript and cookies - Storing information

    This Website imperatively uses JavaScript and cookies to function properly. Neither of these technologies, or other means shall in no case be used on the Website for the retention or disclosure of personal information about Visitors. Exceptions to this rule will involve storing the Users banned for inappropriate comments they might have given as well as contact information for Users wishing to subscribe to future newsletters.

    When a user accesses the Website, the corresponding servers may automatically collect certain data, such as IP address, date and time of Website access, viewed pages and the type of browser used. This information is kept only for the purpose of measuring the number of visitors to the different sections of the site and make improvements.

    Donations - Advertising

    To continue providing the Service for free, the Webmaster reserves the right to insert advertising or promotional messages on any page of the Site. In the same idea, any donations will only by used to cover the running costs of the site, such as hosting, connection fees, hardware and software necessary for the development and maintenance of the Website.

    Links and other websites

    Administrators shall in no case be liable for the non-availability of websites operated by third parties to which users would access through the Website.

    Administrators assume no liability for any content, advertising, products and/or services available on such third party websites. It is reminded that those sites are governed by their own terms of use.

    Placing a link to third party sites or authorize a third party to include a link on their website refering to this Website does not mean that the Administrators recommend in any way the products or services offered by these websites.

    Modifications

    The Webmaster reserves the right to modify at any time without notification the present terms of use as well as all content or specific functionality that the Website offers.

    The modified terms and conditions immediately apply to the using Visitor when changes come online. Visitors are invited to consult the site regularly on the most current version of the terms and conditions

    Governing Law and Jurisdiction

    These general conditions are governed by Belgian law.

    In case of dispute regarding the interpretation and/or execution of the above terms, the parties agree that the courts of the district of Nivelles, Belgium shall have exclusive jurisdiction power.

    Credits page

    Wikipedia.org

    Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia.

    Youtube

    YouTube is a video-sharing website on which users can upload, view and share videos.

    Special thanks to all Youtube quality aviation vids providers, specially (Those I forgot, please excuse me or report) :

    Airboyd
    Andys Video
    Aviation videos archives
    Bomberguy
    Classic Aviation TV
    Historical Aviation Film Unit
    Horsemoney
    Jaglavaksoldier
    Joluqa Malta
    Just Planes
    Koksy
    Classic Airliners & Vintage Pop Culture
    Memorial Flight
    Octane130
    Okrajoe
    SDASM archives
    Spottydog4477
    The Aviators TV
    Valentin Izagirre Bengoetxea
    Vexed123
    VonBerlich
    Zenos Warbirds

    Bundesarchiv

    The German Federal Archives or Bundesarchiv are the National Archives of Germany.

    FAQ

    I don't see my comments any more!

    Please note that each page has it's own comment entry. So, if you enter a comment i.e. on the B-747, you will only see it on that related page.

    General comments are accessed via the "BLOG En" button.

    Comments are moderated, so please allow some delay before they appear, specially if you are outside Europe.

    Menus are developing below the page, because they are too long!

    But they remain accessible, for example by scrolling the mouse wheel, or with your finger (on the menu) on a smartphone or tablet.

    I see adds on all videos.

    Use a good free add remover software.

    The site is loading random pages at startup.

    We think it is a good way to bring back the memory of aircraft, persons or events sometimes quite forgotten.

    HELP PAGE

    Why this site?

    Discovery

    This website is dedicated to one's aeronautical passion (which I hope we share) and was realised mainly as an educationnal tool. Knowing that, you'll notice that each new visit brings random topics for the purpose of making new discoveries, some achievements or characters certainly not deserving the oblivion into which they have sometimes fallen.

    By these pages, we also want to pay tribute to all those who gave at one time or another, their lives or health in the name of freedom, aeronautical security or simply our comfort.

    Centralisation

    Internet is full of websites dedicated to aviation, but most are dedicated to subjects or periods that are very limited in space or time. The purpose of this site is to be as general as possible and thus treats all events as well as characters of all stripes and times while putting much emphasis on the most significant achievements.

    The same years saw birth of technologies like photography and cinema, thus permitting illustration of a large part of important aeronautical events from the start. Countless (and sometimes rare) media recently put online by enthousiasts finally give us access to these treasures, but the huge amount of information often makes things a little messy. A centralization effort is obviously most needed at this level.

    All persons who directly or indirectly contributed to the achievement or posting of such documents are here gratefully acknowledged.

    General

    Fluid website

    This site automatically fits the dimensions of your screen, whether you are on a desktop computer, a tablet or a smartphone.

    Bilingual website

    You can change the language by clicking on the flag in the upper left or via "Options" in the central menu. Of course, the videos remain in the language in which they were posted ...

    Browser compatibility

    The site is not optimized, or even designed to run on older browsers or those deliberately deviating from standards. You will most probably encounter display issues with Internet Explorer. In this case, it is strongly recommended installing a modern (and free!) browser that's respecting the standards, like Firefox, Opera, Chrome or Safari.

    Cookies and Javascript

    This site uses cookies and JavaScript to function properly. Please ensure that your browser is configured accordingly. Neither of these technologies, or other means shall in no case be used on the Site for the retention or disclosure of personal information about its Visitors. See the "Legal" page for more on this subject.

    Website layout

    Left menus

    Because of the lack of space on smartphones and small tablets, these menus are hidden. Everything is nevertheless accessible via the main menu option, located between the video and photo sections. This menu is placed there for compatibility reasons with some browsers, which play the videos over the menus.

    "Search" and "Latest" :
    The link "In Titles" restricts the search to the titles of different forms. Use this option if you are looking for a plane, a constructor, a pilot or a particular event that could have been treated as a subject.

    The link "In Stories" will bring you to a search in all texts (the "Story" tab) and will take more time. The search term will appear highlighted in green when opening the corresponding story.

    Would you believe, "Timeline" will show all subjects in chronological order.

    "Random" will reload the entire page with a new random topic.

    The bottom section keeps you abreast of the latest five entries. New topics are added regularly. Don't hesitate to come visit us often : add bookmark.

    Blogs and Comments central section

    Under the photos section comes the comments tabs window :

    You can enter general comments in your own language via one of the two buttons on the left (BLOG EN and BLOG FR). Note that these buttons are accessible regardless of the language to allow some participation in the other language.

    All comments are subject to moderation and will be published only if they comply with the basic rules of decorum, while remaining relevant to the purpose of this site.

    The third tab allows you to enter comments on the shown topic and is bilingual. Personal anecdotes, supplements and other information questions will take place here.

    The "Story" tab shows the explanatory texts. They are most often taken from Wikipedia, a site where we participate regularly.

    The "Data" tab is reserved for list of features and specifications.

    Right menus

    On a smartphone, the lack of space is growing and this menu is moved to the bottom of the page to give priority to videos and pictures.

    The top right icons are links to videos posted by third parties (on their own responsabilities) or by ourselves. The link below these icons will take you to the channel of the one who posted the video. Feel free to suggest other videos if you think they are of some interest (Use the BLOG button or the "Contact" link).